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1. INTRODUCTION

The prediction of fatigue life with system uncertainties to achieve high reliability and safety
of engineering structures is an important task. Uncertainties a!ecting structural fatigue life
come from three main sources [1, 2] : (a) structural parameter uncertainties due to geometry
and material properties including density, Young's modulus, damping coe$cients, and
Poisson ratio; (b) environmental factors including loads, boundary conditions, temperature,
and humidity; (c) theoretical assumptions of the idealized modelling. Some uncertainties
result in large variance in structural fatigue life while others may have little e!ect. Such
a knowledge is valuable to design engineers. This paper intends to contribute to the
accumulation of this knowledge by studying the e!ect of various uncertainties on structural
fatigue life.
Dependent on the available information, the uncertainties can be modelled as an interval,

a fuzzy set or a random variable [3}6]. This work will adopt the interval model of
uncertainties. In the future, when more information becomes available, we shall consider
random and fuzzy models.
Structural fatigue prediction involves two tasks: dynamic analysis and fatigue modelling.

Many methods have been developed to study the dynamics of stochastic systems including
Monte Carlo simulation, "nite element methods, weighted integral method and maximum
entropy approach [1, 7}10]. With the wide availability of high-speed computers and
e$cient algorithms for simulating stochastic processes, Monte Carlo simulation has
become an increasingly powerful and popular method [11, 12]. Many researchers believe
that Monte Carlo simulation is currently the only universal method that can provide
accurate solutions for stochastic mechanics problems involving system stochasticity, large
variations of uncertain parameters, etc. [10]. This is the method we shall use in this work.
Fatigue is a topic of long history [13}15]. There are two broad classes of fatigue models:

a fracture mechanics-based one and an S}N curve-based one [16}19]. Fatigue is typically
a random process, particularly, when the structure is subject to random excitations. This
random nature has promoted the probabilistic modelling of fatigue [15, 19, 20]. When the
S}Nmodel is adopted, cycle counting schemes are needed to identify fatigue damage events
of a random stress history [21}23]. In this paper, we shall make use of the S}N model
together with the popular rain#ow counting algorithm [14, 24].
In the present paper, we shall consider the structural system with parameter uncertainties

subject to Gaussian white noise excitations. The rest of the paper is organized as follows. In
section 2, the temporal and spectral response of the stress of a beam is presented. Section 3
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reviews the fatigue theory to be used in the present work. Section 4 discusses the modelling
of uncertainties. In section 5, the e!ect of uncertainties on the structural fatigue of a simply
supported beam is studied with Monte Carlo simulation.

2. THE STRESS RESPONSE OF A NOMINAL SYSTEM

Consider a classically damped elastic beam subject to a static in-plane load P and
a transverse random point load g(t) with a spectral density function S
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that its magnitude is less than the critical buckling load �P�(EI��/l�.
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The in-plane load provides a constant stress which is the mean stress when the excitation is
a random process with zero mean. The second part of the stress is the dynamic contribution.
Equation (1) can be rewritten in the following "nite summation as
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), N is the number of modes kept in the solution. Assume that � (t) is

a weakly stationary process. The spectral density function of � (t) can be obtained as follows.
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where * stands for complex conjugate and H
�
(�) is the frequency response function of the

ith modal equation. With S��(�), we can use the algorithms due to Shinozuka to e$ciently
simulate time histories of the stress [11, 12].
The above results are for the nominal system. When the parameters of the system are

uncertain, these results provide a basis for studying the e!ect of the uncertainties. Because
the system parameters appear in the solution in a very non-linear fashion, analytical
methods for studying the e!ect of uncertainties are quite limited. Monte Carlo simulation
will be used subsequently.

3. ESTIMATE OF FATIGUE LIFE

The material fatigue property can be characterized by the well-known S}N curve de"ned
as

N
	
"Ks�
, (4)

where s is the stress amplitude, N
	
is the number of the cycles to failure, and K and b are

material constants. For the stress response with a large mean relative to its #uctuations, the
e!ect of the mean stress has to be considered in the fatigue life prediction. An equivalent



LETTERS TO THE EDITOR 979
stress amplitude including the e!ect of the mean stress on fatigue life can be developed.
There have been several such models [22, 23]. The one adopted in this paper is Goodman's
model which states
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"1, (5)

where s is the real stress amplitude, s
��

is the equivalent stress amplitude, s

is the mean

stress, and s
�
is a material constant related to the true fracture strength.

For the high-cycle fatigue, the Palmgren}Miner linear damage accumulation rule can be
applied [21, 22]. Denote the probability density function (PDF) of the stress range as �(s).
Then, the average damage is given by
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where N
�
is the random number of cycles in the stress process which can be obtained, for

example, by the rain#ow counting scheme [14, 22, 24].N
	
is the number of cycles to fatigue

failure at the stress range level s.
The mean fatigue life in cycles N

�
is reached when D"1,
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"
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"
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)
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Because fatigue is a random process, a su$ciently large number of the stress samples should
be used to count the damage events and to calculate the fatigue life. In practice, on-line
rain#ow counting algorithm can be utilized to monitor if the structure is approaching its
designed fatigue life [18, 25].
With the linear damage accumulation assumption, the fatigue life in cycles can be

converted into that in time [26],
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where ¹
�
is the fatigue life in time. ¸

�
is the total time duration of the stress history samples

used for cycle counting.

4. UNCERTAINTY MODELLING

We now consider a beammade of 2014-T6 aluminum. The nominal parameters of the beam
are E"7)3087�10�� Pa, �"2)77�10� kg/m�, h"0)008 m, l"0)38 m, b"0)05 m,
�
�
"0)05, P"0N.
We shall consider the uncertainties of these parameters: Young's modulus E, the "rst

mode damping ratio �
�
, length l, thickness h and in-plane load P. These parameters directly

or indirectly a!ect the stress response of the structure.
The geometrical parameters of structures are often given by their nominal values plus and

minus the tolerance. For a batch of products, the available information about length and
thickness would be their minimum and maximum values. This uncertainty of parameters
can be modelled as an interval variable, which implies that the parameter has a uniform
distribution in the interval range. In the following, we assume that the uncertain parameters



980 LETTERS TO THE EDITOR
are interval variables with a uniform distribution. The e!ect of the probability distribution
of the parameter uncertainties on fatigue damage will be studied in the future.
In the following numerical study, all the intervals of the parameter uncertainties are

selected to center around the nominal values with a $6% variation, except the in-plane
load whose interval is chosen to be $50% of the critical buckling load.

5. NUMERICAL EXAMPLES

The e!ect of uncertainties on the mean and variance of the fatigue life of a simply
supported elastic beam is studied. In order to investigate the individual e!ect of each
parameter, we treat one parameter to be uncertain at a time. Other parameters assume their
nominal values. Extensive numerical studies have been done. Only a portion of the results
are presented in the following. The number of modes for transverse motion is taken to be 10.
The external excitation is a Gaussian white noise with a constant spectral density function

S
��

(�)"3)5N� s/rad acting at the point x
�
"1/�2 l.

Figures 1}5 show all the numerical results of fatigue life prediction. The fatigue life is
presented with its mean and $ standard deviation denoted by the vertical bars.
Figures 6 and 7 show the sensitivity of fatigue life to the uncertainties. In all the simulations,
50 time histories of the stress with 2�� points in each record are used to calculate the
response statistics.
Figures 1}5 indicate that the mean of fatigue life increases signi"cantly with in-plane

tensile stress and thickness, slightly with the "rst mode damping ratio, and it decreases
signi"cantly with in-plane compressive stress, changes little with uncertainties in length and
decreases slightly with Young's modulus. These trends can also be seen clearly from
Figures 6 and 7.
From Figures 1 to 5, it is seen that beams with larger tensile in-plane load or thickness

than the nominal values have larger variance of the fatigue life excited by the same white
noise, while the length, Young's modulus and the "rst mode damping ratio have a small
e!ect on the propagation of the variance of the excitation force.
Because fatigue is a random process, the di!erence in the fatigue life can be due to either

the changes of the parameters or the variance of the excitation. In Figures 1 and 4, the
changes of the fatigue life is larger than their standard deviation. This seems to suggest that
the uncertainties in the parameters, namely, in-plane load and thickness, have a more
dominant e!ect than the variance of the excitation. On the other hand, in Figures 2, 3 and 5,
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Figure 1. In#uence of the in-plane load on the structural fatigue. Vertical bars stand for the standard deviation.
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Figure 2. In#uence of the length on the structural fatigue. Vertical bars stand for the standard deviation.
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Figure 3. In#uence of Young's modulus on the structural fatigue. Vertical bars stand for the standard deviation.
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Figure 4. In#uence of the thickness on the structural fatigue. Vertical bars stand for the standard deviation.
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the changes of the fatigue life are of the same order as the standard deviation. In this case, it
is di$cult to distinguish various e!ects from that due to the random excitation.
Figures 6 and 7 show that the fatigue life is most sensitive to the in-plane load and

thickness, moderately sensitive to the "rst mode damping ratio, and least sensitive to the
length and Young's modulus.
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Figure 5. In#uence of the "rst mode damping ratio on the structural fatigue.
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Figure 6. Sensitivity of fatigue life to the uncertainty of in-plane load. * stands for the data points.
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Figure 7. Comparision of sensitivity of the fatigue life to various uncertainties: (�, thickness; � "rst mode
damping ratio; *, length; �, Young's modulus).
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It is well known that tensile mean stress shortens the fatigue life and compressive mean
stress elongates it in constant fully reversed deterministic stress cyclic experiments [21].
However, Figures 1 and 6 show that the fatigue life increases with tensile in-plane load. In
the present problem, the in-plane load has both static and dynamic e!ects on the fatigue life.
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The static e!ect, which is the "rst term on the right-hand side of equation (1), is still the same
as observed in reference [21]. However, the dynamic e!ect reduces the response level of the
structure by increasing the e!ective sti!ness, and thereby increases the fatigue life. In the
case of the simply supported beam, the dynamic e!ect dominates the static one.

6. CONCLUSIONS

Structural fatigue life of an elastic beam with uncertainties modelled as interval variables
is studied using Monte Carlo simulation. Some interesting trends are observed. The
increase of in-plane load, thickness and the "rst mode damping ratio from their nominal
values helps elongate the mean of the fatigue life, while the deviation of the length has little
e!ect on the fatigue life, and the mean of the fatigue life decreases slightly with Young's
modulus. The fatigue life is more sensitive to the in-plane load and thickness than the other
parameters. Such a knowledge will prove to be bene"cial to structural engineers in their
design work.
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